Internal
problem
ID
[4703]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
4
Problem
number
:
101
Date
solved
:
Sunday, March 30, 2025 at 03:42:40 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x)+x^3 = x*(x^4+4*y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+x^3==x Sqrt[x^4+4 y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 - x*sqrt(x**4 + 4*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)