29.4.10 problem 99

Internal problem ID [4701]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 4
Problem number : 99
Date solved : Sunday, March 30, 2025 at 03:40:02 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 27
ode:=diff(y(x),x) = a+b*y(x)+(A0+B0*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ x -\int _{}^{y}\frac {1}{a +b \textit {\_a} +\sqrt {\operatorname {B0} \textit {\_a} +\operatorname {A0}}}d \textit {\_a} +c_1 = 0 \]
Mathematica. Time used: 0.62 (sec). Leaf size: 199
ode=D[y[x],x]==a+b y[x]+Sqrt[A0+B0 y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {2 \text {B0} \sqrt {-4 a b \text {B0}+4 \text {A0} b^2+\text {B0}^2} \text {arctanh}\left (\frac {2 b \sqrt {\text {$\#$1} \text {B0}+\text {A0}}+\text {B0}}{\sqrt {-4 a b \text {B0}+4 \text {A0} b^2+\text {B0}^2}}\right )}{b \left (\text {B0}^2-4 b (a \text {B0}-\text {A0} b)\right )}+\frac {\log \left (-b (\text {$\#$1} \text {B0}+\text {A0})-\text {B0} \sqrt {\text {$\#$1} \text {B0}+\text {A0}}-a \text {B0}+\text {A0} b\right )}{b}\&\right ][x+c_1] \\ y(x)\to -\frac {\sqrt {-4 a b \text {B0}+4 \text {A0} b^2+\text {B0}^2}+2 a b-\text {B0}}{2 b^2} \\ y(x)\to \frac {\sqrt {-4 a b \text {B0}+4 \text {A0} b^2+\text {B0}^2}-2 a b+\text {B0}}{2 b^2} \\ \end{align*}
Sympy. Time used: 4.043 (sec). Leaf size: 204
from sympy import * 
x = symbols("x") 
A0 = symbols("A0") 
B0 = symbols("B0") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a - b*y(x) - sqrt(A0 + B0*y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \begin {cases} \frac {2 B_{0} \operatorname {atan}{\left (\frac {2 \left (\frac {B_{0}}{2 b} + \sqrt {A_{0} + B_{0} y{\left (x \right )}}\right )}{\sqrt {- \frac {4 A_{0} b^{2} + B_{0}^{2} - 4 B_{0} a b}{b^{2}}}} \right )}}{b^{2} \sqrt {- \frac {4 A_{0} b^{2} + B_{0}^{2} - 4 B_{0} a b}{b^{2}}}} - \frac {\log {\left (- A_{0} b + B_{0} a + B_{0} \sqrt {A_{0} + B_{0} y{\left (x \right )}} + b \left (A_{0} + B_{0} y{\left (x \right )}\right ) \right )}}{b} & \text {for}\: B_{0} \neq 0 \wedge 4 A_{0} b^{2} + B_{0}^{2} - 4 B_{0} a b \neq 0 \\- \frac {B_{0}}{b^{2} \left (\frac {B_{0}}{2 b} + \sqrt {A_{0} + B_{0} y{\left (x \right )}}\right )} - \frac {\log {\left (- A_{0} b + B_{0} a + B_{0} \sqrt {A_{0} + B_{0} y{\left (x \right )}} + b \left (A_{0} + B_{0} y{\left (x \right )}\right ) \right )}}{b} & \text {for}\: B_{0} \neq 0 \\- \frac {y{\left (x \right )}}{\sqrt {A_{0}} + a} & \text {for}\: b = 0 \\- \frac {\log {\left (- \sqrt {A_{0}} - a - b y{\left (x \right )} \right )}}{b} & \text {otherwise} \end {cases} = C_{1} - x \]