29.3.1 problem 55

Internal problem ID [4663]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 3
Problem number : 55
Date solved : Sunday, March 30, 2025 at 03:34:46 AM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=a x +b y^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 59
ode:=diff(y(x),x) = a*x+b*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (b a \right )^{{1}/{3}} \left (\operatorname {AiryAi}\left (1, -\left (b a \right )^{{1}/{3}} x \right ) c_1 +\operatorname {AiryBi}\left (1, -\left (b a \right )^{{1}/{3}} x \right )\right )}{b \left (c_1 \operatorname {AiryAi}\left (-\left (b a \right )^{{1}/{3}} x \right )+\operatorname {AiryBi}\left (-\left (b a \right )^{{1}/{3}} x \right )\right )} \]
Mathematica. Time used: 0.141 (sec). Leaf size: 331
ode=D[y[x],x]==a x+b y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt {a} \sqrt {b} x^{3/2} \left (-2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )+c_1 \left (\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )}{2 b x \left (\operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )\right )} \\ y(x)\to -\frac {\sqrt {a} \sqrt {b} x^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )-\sqrt {a} \sqrt {b} x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )}{2 b x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} \sqrt {a} \sqrt {b} x^{3/2}\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*x - b*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*x - b*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method