29.2.5 problem 30

Internal problem ID [4638]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 2
Problem number : 30
Date solved : Sunday, March 30, 2025 at 03:31:53 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=\sin \left (2 x \right )+y \tan \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(y(x),x) = sin(2*x)+y(x)*tan(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 \cos \left (x \right )^{2}}{3}+c_1 \sec \left (x \right ) \]
Mathematica. Time used: 0.042 (sec). Leaf size: 19
ode=D[y[x],x]==Sin[2*x]+y[x]*Tan[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {2 \cos ^2(x)}{3}+c_1 \sec (x) \]
Sympy. Time used: 1.369 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*tan(x) - sin(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\cos {\left (x \right )}} - \frac {2 \cos ^{2}{\left (x \right )}}{3} \]