Internal
problem
ID
[4586]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.54
Date
solved
:
Sunday, March 30, 2025 at 03:29:41 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 2*x__1(t)-x__2(t)-x__3(t)+2*exp(2*t), diff(x__2(t),t) = 3*x__1(t)-2*x__2(t)-3*x__3(t), diff(x__3(t),t) = -x__1(t)+x__2(t)+2*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==2*x1[t]-x2[t]-x3[t]+2*Exp[2*t],D[x2[t],t]==3*x1[t]-2*x2[t]-3*x3[t],D[x3[t],t]==-x1[t]+x2[t]+2*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-2*x__1(t) + x__2(t) + x__3(t) - 2*exp(2*t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) + 2*x__2(t) + 3*x__3(t) + Derivative(x__2(t), t),0),Eq(x__1(t) - x__2(t) - 2*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)