Internal
problem
ID
[4582]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.50
Date
solved
:
Sunday, March 30, 2025 at 03:26:50 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -3*x__1(t)+4*x__2(t)-2*x__3(t)+exp(t), diff(x__2(t),t) = x__1(t)+x__2(t), diff(x__3(t),t) = 6*x__1(t)-6*x__2(t)+5*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==-3*x1[t]+4*x2[t]-2*x3[t]+Exp[t],D[x2[t],t]==x1[t]+x2[t],D[x3[t],t]==6*x1[t]-6*x2[t]+5*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(3*x__1(t) - 4*x__2(t) + 2*x__3(t) - exp(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - x__2(t) + Derivative(x__2(t), t),0),Eq(-6*x__1(t) + 6*x__2(t) - 5*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
Timed Out