Internal
problem
ID
[4574]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.42
Date
solved
:
Sunday, March 30, 2025 at 03:26:38 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -4*x__1(t)-2*x__2(t)+2/(exp(t)-1), diff(x__2(t),t) = 6*x__1(t)+3*x__2(t)-3/(exp(t)-1)]; dsolve(ode);
ode={D[x1[t],t]==-4*x1[t]-2*x2[t]+2/(Exp[t]-1),D[x2[t],t]==6*x1[t]+3*x2[t]-3/(Exp[t]-1)}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(4*x__1(t) + 2*x__2(t) + Derivative(x__1(t), t) - 2/(exp(t) - 1),0),Eq(-6*x__1(t) - 3*x__2(t) + Derivative(x__2(t), t) + 3/(exp(t) - 1),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)