Internal
problem
ID
[4564]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.32
Date
solved
:
Sunday, March 30, 2025 at 03:26:22 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 5*x__1(t)+3*x__2(t), diff(x__2(t),t) = -3*x__1(t)-x__2(t)]; ic:=x__1(0) = 1x__2(0) = -2; dsolve([ode,ic]);
ode={D[x1[t],t]==5*x1[t]+3*x2[t],D[x2[t],t]==-3*x1[t]-x2[t]}; ic={x1[0]==1,x2[0]==-2}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-5*x__1(t) - 3*x__2(t) + Derivative(x__1(t), t),0),Eq(3*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)