Internal
problem
ID
[4556]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.24
Date
solved
:
Sunday, March 30, 2025 at 03:26:12 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(x(t),t),t)+diff(x(t),t)+diff(y(t),t)-2*y(t) = 40*exp(3*t), diff(x(t),t)+x(t)-diff(y(t),t) = 36*exp(t)]; ic:=x(0) = 1y(0) = 3D(x)(0) = 1; dsolve([ode,ic]);
ode={D[x[t],{t,2}]+D[x[t],t]+D[y[t],t]-2*y[t]==40*Exp[3*t],D[x[t],t]+x[t]-D[y[t],t]==36*Exp[t]}; ic={x[0]==1,y[0]==3,Derivative[1][x][0] == 1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*y(t) - 40*exp(3*t) + Derivative(x(t), t) + Derivative(x(t), (t, 2)) + Derivative(y(t), t),0),Eq(x(t) - 36*exp(t) + Derivative(x(t), t) - Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)