Internal
problem
ID
[4552]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.20
Date
solved
:
Sunday, March 30, 2025 at 03:26:07 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)-x(t)-2*y(t) = 16*t*exp(t), 2*x(t)-diff(y(t),t)-2*y(t) = 0]; ic:=x(0) = 4y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]-x[t]-2*y[t]==16*t*Exp[t],2*x[t]-D[y[t],t]-2*y[t]==0}; ic={x[0]==4,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-16*t*exp(t) - x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(2*x(t) - 2*y(t) - Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)