Internal
problem
ID
[4539]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.7
Date
solved
:
Sunday, March 30, 2025 at 03:25:46 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x)-2*y__1(x)+3*y__2(x)-3*y__3(x) = 0, -4*y__1(x)+diff(y__2(x),x)+5*y__2(x)-3*y__3(x) = 0, -4*y__1(x)+4*y__2(x)+diff(y__3(x),x)-2*y__3(x) = 0]; dsolve(ode);
ode={D[y1[x],x]-2*y1[x]+3*y2[x]-3*y2[x]==0,-4*y1[x]+D[y2[x],x]+5*y2[x]-3*y3[x]==0, -4*y1[x]+4*y2[x]+D[y3[x],x]-2*y3[x]==0}; ic={}; DSolve[{ode,ic},{y1[x],y2[x],y3[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-2*y__1(x) + 3*y__2(x) - 3*y__3(x) + Derivative(y__1(x), x),0),Eq(-4*y__1(x) + 5*y__2(x) - 3*y__3(x) + Derivative(y__2(x), x),0),Eq(-4*y__1(x) + 4*y__2(x) - 2*y__3(x) + Derivative(y__3(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x),y__3(x)],ics=ics)