28.2.64 problem 64

Internal problem ID [4507]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 4. Linear Differential Equations. Page 183
Problem number : 64
Date solved : Sunday, March 30, 2025 at 03:24:21 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = exp(2*x)/(exp(x)+1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 +c_1 x +\ln \left ({\mathrm e}^{x}+1\right )-\frac {x}{2}\right ) \]
Mathematica. Time used: 0.325 (sec). Leaf size: 24
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==Exp[2*x]/(Exp[x]+1)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x \left (\log \left (e^x+1\right )+(-1+c_2) x+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(2*x)/(exp(x) + 1)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (y(x)*exp(2*x) + 2*y(x)*exp(x) + y(x) + exp(2*x)*Derivative(y(x), (x, 2)) - exp(2*x) + 2*exp(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 2)))/(2*(exp(2*x) + 2*exp(x) + 1)) cannot be solved by the factorable group method