28.1.126 problem 149

Internal problem ID [4432]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 149
Date solved : Sunday, March 30, 2025 at 03:22:03 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 21
ode:=y(x)*diff(diff(y(x),x),x)-y(x)^2*diff(y(x),x)-diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {c_1}{{\mathrm e}^{-\left (c_2 +x \right ) c_1}-1} \\ \end{align*}
Mathematica. Time used: 1.469 (sec). Leaf size: 43
ode=y[x]*D[y[x],{x,2}]-y[x]^2*D[y[x],x]-D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {c_1 e^{c_1 (x+c_2)}}{-1+e^{c_1 (x+c_2)}} \\ y(x)\to -\frac {1}{x+c_2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt((y(x)**3 + 4*Derivative(y(x), (x, 2)))*y(x))/2 + y(x)**2/2 + Derivative(y(x), x) cannot be solved by the factorable group method