Internal
problem
ID
[4428]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
145
Date
solved
:
Sunday, March 30, 2025 at 03:21:40 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=y(x)+2*y(x)^3*diff(y(x),x) = (x+4*y(x)*ln(y(x)))*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=y[x]+2*y[x]^3*D[y[x],x]==(x+4*y[x]*Log[y[x]])*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - 4*y(x)*log(y(x)))*Derivative(y(x), x) + 2*y(x)**3*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)