28.1.84 problem 87

Internal problem ID [4390]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 87
Date solved : Sunday, March 30, 2025 at 03:13:53 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{3}+y^{2}&=x y y^{\prime } \end{align*}

Maple. Time used: 0.152 (sec). Leaf size: 135
ode:=diff(y(x),x)^3+y(x)^2 = x*y(x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {2 x^{3} \sqrt {x^{2}+3 c_1}-2 x^{4}-6 c_1 x \sqrt {x^{2}+3 c_1}+3 c_1 \,x^{2}-9 c_1^{2}}{-27 x +27 \sqrt {x^{2}+3 c_1}} \\ y &= \frac {2 x^{3} \sqrt {x^{2}+3 c_1}+2 x^{4}-6 c_1 x \sqrt {x^{2}+3 c_1}-3 c_1 \,x^{2}+9 c_1^{2}}{27 x +27 \sqrt {x^{2}+3 c_1}} \\ \end{align*}
Mathematica
ode=(D[y[x],x])^3+y[x]^2==x*y[x]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)*Derivative(y(x), x) + y(x)**2 + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out