28.1.60 problem 61

Internal problem ID [4366]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 61
Date solved : Sunday, March 30, 2025 at 03:10:34 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} y&=\left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 62
ode:=y(x) = (exp(y(x))+2*x*y(x)-2*x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (x \,\textit {\_Z}^{2}-c_1 +\textit {\_Z} +{\mathrm e}^{\operatorname {RootOf}\left (-x \,{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z}^{2}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+c_1 -{\mathrm e}^{\textit {\_Z}}\right )}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (-x \,{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z}^{2}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+c_1 -{\mathrm e}^{\textit {\_Z}}\right )} \]
Mathematica. Time used: 0.299 (sec). Leaf size: 34
ode=y[x]==(Exp[y[x]]+2*x*y[x]-2*x)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=\frac {e^{y(x)} (-y(x)-1)}{y(x)^2}+\frac {c_1 e^{2 y(x)}}{y(x)^2},y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x*y(x) + 2*x - exp(y(x)))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
KeyError : ordered_hints