Internal
problem
ID
[4341]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
35
Date
solved
:
Sunday, March 30, 2025 at 03:05:57 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=2*y(x)*(x+y(x)+2)+(y(x)^2-x^2-4*x-1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*y[x]*(x+y[x]+2)+(y[x]^2-x^2-4*x-1)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + 2*y(x) + 4)*y(x) + (-x**2 - 4*x + y(x)**2 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)