28.1.30 problem 30

Internal problem ID [4336]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 30
Date solved : Sunday, March 30, 2025 at 03:05:44 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 4 x y+3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 59
ode:=4*x*y(x)+3*y(x)^2-x+x*(x+2*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-x^{3}+\sqrt {x \left (x^{5}+x^{4}-4 c_1 \right )}}{2 x^{2}} \\ y &= \frac {-x^{3}-\sqrt {x \left (x^{5}+x^{4}-4 c_1 \right )}}{2 x^{2}} \\ \end{align*}
Mathematica. Time used: 0.653 (sec). Leaf size: 80
ode=(4*x*y[x]+3*y[x]^2-x)+x*(x+2*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x^4+\sqrt {x^2} \sqrt {x^6+x^5+4 c_1 x}}{2 x^3} \\ y(x)\to -\frac {x}{2}+\frac {\sqrt {x^2} \sqrt {x^6+x^5+4 c_1 x}}{2 x^3} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x + 2*y(x))*Derivative(y(x), x) + 4*x*y(x) - x + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out