28.1.20 problem 20

Internal problem ID [4326]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 20
Date solved : Sunday, March 30, 2025 at 03:01:28 AM
CAS classification : [_exact, _rational]

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 125
ode:=3*x^2+6*x*y(x)^2+(6*x^2*y(x)+4*y(x)^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-6 x^{2}-2 \sqrt {9 x^{4}-4 x^{3}-4 c_1}}}{2} \\ y &= \frac {\sqrt {-6 x^{2}-2 \sqrt {9 x^{4}-4 x^{3}-4 c_1}}}{2} \\ y &= -\frac {\sqrt {-6 x^{2}+2 \sqrt {9 x^{4}-4 x^{3}-4 c_1}}}{2} \\ y &= \frac {\sqrt {-6 x^{2}+2 \sqrt {9 x^{4}-4 x^{3}-4 c_1}}}{2} \\ \end{align*}
Mathematica. Time used: 6.07 (sec). Leaf size: 163
ode=(3*x^2+6*x*y[x]^2)+(6*x^2*y[x]+4*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-3 x^2-\sqrt {9 x^4-4 x^3+4 c_1}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-3 x^2-\sqrt {9 x^4-4 x^3+4 c_1}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {-3 x^2+\sqrt {9 x^4-4 x^3+4 c_1}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-3 x^2+\sqrt {9 x^4-4 x^3+4 c_1}}}{\sqrt {2}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2 + 6*x*y(x)**2 + (6*x**2*y(x) + 4*y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out