26.5.7 problem 9

Internal problem ID [4281]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, End of chapter, page 61
Problem number : 9
Date solved : Sunday, March 30, 2025 at 02:48:58 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (x y-x^{2}\right ) y^{\prime }&=y^{2} \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 17
ode:=(x*y(x)-x^2)*diff(y(x),x) = y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-c_1}}{x}\right ) \]
Mathematica. Time used: 1.966 (sec). Leaf size: 25
ode=(x*y[x]-x^2)*D[y[x],x]==y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x W\left (-\frac {e^{-c_1}}{x}\right ) \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.474 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x**2 + x*y(x))*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x W\left (\frac {C_{1}}{x}\right ) \]