26.4.1 problem 2(a)

Internal problem ID [4269]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, section 11, page 49
Problem number : 2(a)
Date solved : Sunday, March 30, 2025 at 02:48:16 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }-3 y&=x^{4} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=x*diff(y(x),x)-3*y(x) = x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) x^{3} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 13
ode=x*D[y[x],x]-3*y[x]==x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^3 (x+c_1) \]
Sympy. Time used: 0.222 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + x*Derivative(y(x), x) - 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{3} \left (C_{1} + x\right ) \]