26.3.8 problem 4(e)

Internal problem ID [4268]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, section 10, page 47
Problem number : 4(e)
Date solved : Sunday, March 30, 2025 at 02:48:14 AM
CAS classification : [[_homogeneous, `class D`], _rational, _Riccati]

\begin{align*} x y^{\prime }&=y+x^{2}+9 y^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=x*diff(y(x),x) = y(x)+x^2+9*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\tan \left (3 x +3 c_1 \right ) x}{3} \]
Mathematica. Time used: 0.26 (sec). Leaf size: 17
ode=x*D[y[x],x]==y[x]+x^2+9*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} x \tan (3 (x+c_1)) \]
Sympy. Time used: 0.344 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + x*Derivative(y(x), x) - 9*y(x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x \left (i C_{1} + i e^{6 i x}\right )}{3 \left (C_{1} - e^{6 i x}\right )} \]