26.2.8 problem 8

Internal problem ID [4257]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, section 8, page 41
Problem number : 8
Date solved : Sunday, March 30, 2025 at 02:46:48 AM
CAS classification : [_separable]

\begin{align*} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}}&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 13
ode:=-1/y(x)*sin(x/y(x))+x/y(x)^2*sin(x/y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{\pi -c_1} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 19
ode=-1/y[x]*Sin[x/y[x]]+x/y[x]^2*Sin[x/y[x]]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x \\ y(x)\to \text {ComplexInfinity} \\ y(x)\to \text {ComplexInfinity} \\ \end{align*}
Sympy. Time used: 0.201 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*sin(x/y(x))*Derivative(y(x), x)/y(x)**2 - sin(x/y(x))/y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x \]