24.1.19 problem 4(d)

Internal problem ID [4208]
Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60
Problem number : 4(d)
Date solved : Sunday, March 30, 2025 at 02:42:54 AM
CAS classification : [_linear]

\begin{align*} \sin \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 24
ode:=sin(x)*diff(y(x),x)+y(x) = sin(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (-2 \cos \left (x \right )+2 \ln \left (\cos \left (x \right )+1\right )+c_1 \right ) \left (\cos \left (x \right )+1\right ) \csc \left (x \right ) \]
Mathematica. Time used: 0.268 (sec). Leaf size: 38
ode=Sin[x]*D[y[x],x]+y[x]==Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{\text {arctanh}(\cos (x))} \left (-2 \sqrt {\sin ^2(x)} \csc (x) \left (\cos (x)+\log \left (\sec ^2\left (\frac {x}{2}\right )\right )\right )+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + sin(x)*Derivative(y(x), x) - sin(2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out