Internal
problem
ID
[4159]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
8(h)
Date
solved
:
Sunday, March 30, 2025 at 02:41:15 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 2*x^2-4*x-1+2*x^2*exp(2*x)+5*x*exp(2*x)+exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==2*x^2-4*x-1+2*x^2*Exp[2*x]+5*x*Exp[2*x]+Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2*exp(2*x) - 2*x**2 - 5*x*exp(2*x) + 4*x + 4*y(x) - exp(2*x) - 4*Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)