Internal
problem
ID
[4149]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
7(h)
Date
solved
:
Sunday, March 30, 2025 at 02:41:02 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-diff(diff(diff(y(x),x),x),x)-9*diff(diff(y(x),x),x)-11*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-D[y[x],{x,3}]-9*D[y[x],{x,2}]-11*D[y[x],x]-4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*y(x) - 11*Derivative(y(x), x) - 9*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)