Internal
problem
ID
[4139]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
3.
Linear
differential
equations
of
second
order.
Exercises
at
page
31
Problem
number
:
7
Date
solved
:
Sunday, March 30, 2025 at 02:40:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(x^2+1)*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1+x^2)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False