23.1.24 problem 2(n)

Internal problem ID [4114]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 2. First order equations. Exercises at page 14
Problem number : 2(n)
Date solved : Sunday, March 30, 2025 at 02:19:49 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 1.110 (sec). Leaf size: 1636
ode:=3*y(x)-7*x+7+(7*y(x)-3*x+3)*diff(y(x),x) = 0; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 86.557 (sec). Leaf size: 1602
ode=(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*D[y[x],x]==0; 
ic=y[0]==0; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-7*x + (-3*x + 7*y(x) + 3)*Derivative(y(x), x) + 3*y(x) + 7,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions