Internal
problem
ID
[4106]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(f)
Date
solved
:
Sunday, March 30, 2025 at 02:18:11 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(x),x) = exp(x)*sin(x); ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==Exp[x]*Sin[x]; ic=y[0]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-exp(x)*sin(x) + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)