Internal
problem
ID
[4030]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.5.
page
771
Problem
number
:
(b)
Date
solved
:
Sunday, March 30, 2025 at 02:15:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)-(-1+2*5^(1/2))*x*diff(y(x),x)+(19/4-3*x^2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]-(2*Sqrt[5]-1)*x*D[y[x],x]+(19/4-3*x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*(-1 + 2*sqrt(5))*Derivative(y(x), x) + (19/4 - 3*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
NotImplementedError : Not sure of sign of 6 - x1