Internal
problem
ID
[4001]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.2.
page
739
Problem
number
:
Problem
17
Date
solved
:
Sunday, March 30, 2025 at 02:14:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x*diff(diff(y(x),x),x)-(x-1)*diff(y(x),x)-x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x*D[y[x],{x,2}]-(x-1)*D[y[x],x]-x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + x*Derivative(y(x), (x, 2)) - (x - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)