Internal
problem
ID
[3995]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.2.
page
739
Problem
number
:
Problem
10
Date
solved
:
Sunday, March 30, 2025 at 02:14:03 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(x^2+1)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1+x^2)*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)