Internal
problem
ID
[3975]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.8.
page
710
Problem
number
:
Problem
3
Date
solved
:
Sunday, March 30, 2025 at 02:13:28 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+4*y(t) = 3*Dirac(t-1); ic:=y(0) = 2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]+4*y[t]==3*DiracDelta[t-1]; ic={y[0]==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*Dirac(t - 1) + 4*y(t) + Derivative(y(t), t),0) ics = {y(0): 2} dsolve(ode,func=y(t),ics=ics)