20.19.10 problem 11

Internal problem ID [3890]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.8 (Matrix exponential function), page 642
Problem number : 11
Date solved : Sunday, March 30, 2025 at 02:11:09 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{2} \left (t \right )-x_{4} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right ) \end{align*}

Maple. Time used: 0.412 (sec). Leaf size: 123
ode:=[diff(x__1(t),t) = -x__2(t), diff(x__2(t),t) = x__1(t), diff(x__3(t),t) = x__2(t)-x__4(t), diff(x__4(t),t) = x__2(t)+x__3(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_3 \sin \left (t \right )+c_4 \cos \left (t \right ) \\ x_{2} \left (t \right ) &= -c_3 \cos \left (t \right )+c_4 \sin \left (t \right ) \\ x_{3} \left (t \right ) &= \sin \left (t \right ) c_2 +\cos \left (t \right ) c_1 +\frac {c_3 \cos \left (t \right )}{2}+\frac {\sin \left (t \right ) c_3 t}{2}+\frac {c_4 \cos \left (t \right )}{2}+\frac {\sin \left (t \right ) c_4 t}{2}-\frac {\cos \left (t \right ) c_3 t}{2}+\frac {\cos \left (t \right ) c_4 t}{2} \\ x_{4} \left (t \right ) &= -\cos \left (t \right ) c_2 +\sin \left (t \right ) c_1 -\frac {\cos \left (t \right ) c_3 t}{2}-\frac {\cos \left (t \right ) c_4 t}{2}-\frac {c_3 \cos \left (t \right )}{2}-\frac {c_4 \cos \left (t \right )}{2}-\frac {\sin \left (t \right ) c_3 t}{2}+\frac {\sin \left (t \right ) c_4 t}{2}+c_4 \sin \left (t \right ) \\ \end{align*}
Mathematica. Time used: 0.031 (sec). Leaf size: 80
ode={D[x1[t],t]==0*x1[t]-1*x2[t]+0*x3[t]+0*x4[t],D[x2[t],t]==1*x1[t]+0*x2[t]-0*x3[t]+0*x4[t],D[x3[t],t]==1*x1[t]+0*x2[t]+0*x3[t]-x4[t],D[x4[t],t]==0*x1[t]+1*x2[t]+1*x3[t]-0*x4[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to c_1 \cos (t)-c_2 \sin (t) \\ \text {x2}(t)\to c_2 \cos (t)+c_1 \sin (t) \\ \text {x3}(t)\to (c_1 t+c_3) \cos (t)-(c_2 t+c_4) \sin (t) \\ \text {x4}(t)\to (c_2 t+c_4) \cos (t)+(c_1 t+c_3) \sin (t) \\ \end{align*}
Sympy. Time used: 0.183 (sec). Leaf size: 88
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
x__3 = Function("x__3") 
x__4 = Function("x__4") 
ode=[Eq(x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + Derivative(x__2(t), t),0),Eq(-x__2(t) + x__4(t) + Derivative(x__3(t), t),0),Eq(-x__2(t) - x__3(t) + Derivative(x__4(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \left (C_{1} - C_{2}\right ) \cos {\left (t \right )} + \left (C_{1} + C_{2}\right ) \sin {\left (t \right )}, \ x^{2}{\left (t \right )} = - \left (C_{1} - C_{2}\right ) \sin {\left (t \right )} - \left (C_{1} + C_{2}\right ) \cos {\left (t \right )}, \ x^{3}{\left (t \right )} = - C_{1} t \cos {\left (t \right )} + C_{2} t \sin {\left (t \right )} + \left (C_{1} - C_{4}\right ) \cos {\left (t \right )} - \left (C_{2} - C_{3}\right ) \sin {\left (t \right )}, \ x^{4}{\left (t \right )} = - C_{1} t \sin {\left (t \right )} - C_{2} t \cos {\left (t \right )} - C_{3} \cos {\left (t \right )} - C_{4} \sin {\left (t \right )}\right ] \]