Internal
problem
ID
[3793]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.9,
Reduction
of
Order.
page
572
Problem
number
:
Problem
14
Date
solved
:
Sunday, March 30, 2025 at 02:08:40 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 4*exp(2*x)*ln(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==4*Exp[2*x]*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - 4*exp(2*x)*log(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)