20.11.9 problem Problem 12

Internal problem ID [3791]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number : Problem 12
Date solved : Sunday, March 30, 2025 at 02:08:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y&=8 x^{4} \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = 8*x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} \left (\ln \left (x \right ) c_1 +2 x^{2}+c_2 \right ) \]
Mathematica. Time used: 0.019 (sec). Leaf size: 23
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x]==8*x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2 \left (2 x^2+2 c_2 \log (x)+c_1\right ) \]
Sympy. Time used: 0.257 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*x**4 + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (C_{1} + C_{2} \log {\left (x \right )} + 2 x^{2}\right ) \]