Internal
problem
ID
[3786]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.9,
Reduction
of
Order.
page
572
Problem
number
:
Problem
4
Date
solved
:
Sunday, March 30, 2025 at 02:08:32 AM
CAS
classification
:
[_Gegenbauer]
Using reduction of order method given that one solution is
ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False