Internal
problem
ID
[3761]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
17
Date
solved
:
Sunday, March 30, 2025 at 02:07:37 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = 4*exp(-2*x)/(x^2+1)+2*x^2-1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==4*Exp[-2*x]/(1+x^2)+2*x^2-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 + 4*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 1 - 4*exp(-2*x)/(x**2 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**4*exp(2*x) - 4*x**2*y(x)*exp(2*x) - x**2*exp(2*x)*Derivative(y(x), (x, 2)) + x**2*exp(2*x) - 4*y(x)*exp(2*x) - exp(2*x)*Derivative(y(x), (x, 2)) - exp(2*x) + 4)*exp(-2*x)/(4*(x**2 + 1)) cannot be solved by the factorable group method