Internal
problem
ID
[3755]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
11
Date
solved
:
Sunday, March 30, 2025 at 02:07:26 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+y(x) = csc(x)+2*x^2+5*x+1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==Csc[x]+2*x^2+5*x+1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 - 5*x + y(x) + Derivative(y(x), (x, 2)) - 1 - 1/sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)