Internal
problem
ID
[3748]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
4
Date
solved
:
Sunday, March 30, 2025 at 02:07:14 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+6*diff(y(x),x)+9*y(x) = 2*exp(-3*x)/(x^2+1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+6*D[y[x],x]+9*y[x]==2*Exp[-3*x]/(x^2+1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) + 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2*exp(-3*x)/(x**2 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-9*x**2*y(x)*exp(3*x) - x**2*exp(3*x)*Derivative(y(x), (x, 2)) - 9*y(x)*exp(3*x) - exp(3*x)*Derivative(y(x), (x, 2)) + 2)*exp(-3*x)/(6*(x**2 + 1)) cannot be solved by the factorable group method