Internal
problem
ID
[3746]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
2
Date
solved
:
Sunday, March 30, 2025 at 02:07:10 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = 1/x^2*exp(-2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==x^(-2)*Exp[-2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-2*x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)