20.9.2 problem Problem 2

Internal problem ID [3746]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number : Problem 2
Date solved : Sunday, March 30, 2025 at 02:07:10 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = 1/x^2*exp(-2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (c_1 x -\ln \left (x \right )+c_2 -1\right ) \]
Mathematica. Time used: 0.029 (sec). Leaf size: 23
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==x^(-2)*Exp[-2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} (-\log (x)+c_2 x-1+c_1) \]
Sympy. Time used: 0.292 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-2*x)/x**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x - \log {\left (x \right )}\right ) e^{- 2 x} \]