Internal
problem
ID
[3727]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.3,
The
Method
of
Undetermined
Coefficients.
page
525
Problem
number
:
Problem
36
Date
solved
:
Sunday, March 30, 2025 at 02:06:38 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = 4*cos(x)-2*sin(x); ic:=y(0) = -1, D(y)(0) = 4; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]-2*y[x]==4*Cos[x]-2*Sin[x]; ic={y[0]==-1,Derivative[1][y][0] ==4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*y(x) + 2*sin(x) - 4*cos(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 4} dsolve(ode,func=y(x),ics=ics)