Internal
problem
ID
[3712]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.1,
General
Theory
for
Linear
Differential
Equations.
page
502
Problem
number
:
Problem
39
Date
solved
:
Sunday, March 30, 2025 at 02:06:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = 4*x^2+5; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]-2*y[x]==4*x^2+5; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2 - 2*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 5,0) ics = {} dsolve(ode,func=y(x),ics=ics)