20.6.12 problem Problem 34

Internal problem ID [3707]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number : Problem 34
Date solved : Sunday, March 30, 2025 at 02:06:10 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)-8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{6}+c_2}{x^{4}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^6+c_1}{x^4} \]
Sympy. Time used: 0.151 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{4}} + C_{2} x^{2} \]