20.6.10 problem Problem 32

Internal problem ID [3705]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number : Problem 32
Date solved : Sunday, March 30, 2025 at 02:06:08 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 22
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-x}+c_3 \,{\mathrm e}^{2 x}+c_4 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 34
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]-D[y[x],{x,2}]+2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \left (-e^{-x}\right )+c_2 e^x+\frac {1}{2} c_3 e^{2 x}+c_4 \]
Sympy. Time used: 0.185 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*Derivative(y(x), x) - Derivative(y(x), (x, 2)) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + C_{3} e^{x} + C_{4} e^{2 x} \]