Internal
problem
ID
[3705]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.1,
General
Theory
for
Linear
Differential
Equations.
page
502
Problem
number
:
Problem
32
Date
solved
:
Sunday, March 30, 2025 at 02:06:08 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]-D[y[x],{x,2}]+2*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*Derivative(y(x), x) - Derivative(y(x), (x, 2)) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)