Internal
problem
ID
[3657]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
38
Date
solved
:
Sunday, March 30, 2025 at 02:02:11 AM
CAS
classification
:
[[_homogeneous, `class D`], _Bernoulli]
ode:=diff(y(x),x)-y(x)/x = 4*x^2/y(x)*cos(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-1/x*y[x]==4*x^2/y[x]*Cos[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2*cos(x)/y(x) + Derivative(y(x), x) - y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)