Internal
problem
ID
[3652]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
26
Date
solved
:
Sunday, March 30, 2025 at 01:59:02 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=diff(y(x),x) = (2*x-y(x))/(x+4*y(x)); ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(2*x-y[x])/(x+4*y[x]); ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x - y(x))/(x + 4*y(x)),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)