Internal
problem
ID
[3581]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.2,
Basic
Ideas
and
Terminology.
page
21
Problem
number
:
Problem
32
Date
solved
:
Sunday, March 30, 2025 at 01:52:37 AM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=diff(y(x),x) = 1/2*(cos(x)-2*x*y(x)^2)/x^2/y(x); ic:=y(Pi) = 1/Pi; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(Cos[x]-2*x*y[x]^2)/(2*x^2*y[x]); ic={y[Pi]==1/Pi}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (-2*x*y(x)**2 + cos(x))/(2*x**2*y(x)),0) ics = {y(pi): 1/pi} dsolve(ode,func=y(x),ics=ics)