Internal
problem
ID
[3511]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
16,
Series
solutions
of
ODEs.
Section
16.6
Exercises,
page
550
Problem
number
:
Problem
16.12
(b)
Date
solved
:
Sunday, March 30, 2025 at 01:45:24 AM
CAS
classification
:
[[_Emden, _Fowler]]
Using series method with expansion around
Order:=6; ode:=(z^2+5*z+7)*diff(diff(y(z),z),z)+2*y(z) = 0; dsolve(ode,y(z),type='series',z=0);
ode=(z^2+5*z+7)*D[y[z],{z,2}]+2*y[z]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[z],{z,0,5}]
from sympy import * z = symbols("z") y = Function("y") ode = Eq((z**2 + 5*z + 7)*Derivative(y(z), (z, 2)) + 2*y(z),0) ics = {} dsolve(ode,func=y(z),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)