Internal
problem
ID
[3509]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
16,
Series
solutions
of
ODEs.
Section
16.6
Exercises,
page
550
Problem
number
:
Problem
16.11
Date
solved
:
Sunday, March 30, 2025 at 01:45:21 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=z*diff(diff(y(z),z),z)+(2*z-3)*diff(y(z),z)+4/z*y(z) = 0; dsolve(ode,y(z),type='series',z=0);
ode=z*D[y[z],{z,2}]+(2*z-3)*D[y[z],z]+4/z*y[z]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[z],{z,0,5}]
from sympy import * z = symbols("z") y = Function("y") ode = Eq(z*Derivative(y(z), (z, 2)) + (2*z - 3)*Derivative(y(z), z) + 4*y(z)/z,0) ics = {} dsolve(ode,func=y(z),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)